Another demonstration of the theorem by Hojman and Harleston

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 16707
(http://iopscience.iop.org/0305-4470/16/4/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:03

Please note that terms and conditions apply.

Another demonstration of the theorem by Hojman and Harleston

J Ronald Farias and L J Negri
Departamento de Física, Universidade Federal da Paraíba, 58.000, Joäo Pessoa (PB), Brazil

Received 25 August 1982

Abstract

Another demonstration of a theorem on the calculus of variations derived recently by Hojman and Harleston (using Helmholtz conditions) is presented.

1. Introduction

Recently Hojman and Harleston (1981) have demonstrated the following theorem on the calculus of variations. Consider the Lagrangian $L=L\left(q^{i}, \dot{q}^{i}, t\right), i=1, \ldots, n$, such that

$$
\operatorname{det}\left(\partial^{2} L / \partial \dot{q}_{i} \partial \dot{q}_{j}\right) \neq 0
$$

which leads to the set of equations

$$
G_{i} \equiv(\mathrm{~d} / \mathrm{d} t)\left(\partial L / \partial \dot{\partial}_{i}\right)-\left(\partial L / \partial q_{i}\right)=0
$$

The Lagrangian $\bar{L}=\bar{L}\left(q^{i}, \dot{q}^{i}, t\right)$, with

$$
\operatorname{det}\left(\partial^{2} \bar{L} / \partial \dot{q}_{i} \partial \dot{q}_{i}\right) \neq 0
$$

is said to be subordinate (or equivalent) to L iff

$$
\left\{G_{i}=0\right\} \Rightarrow\left\{\bar{G}_{i} \equiv(\mathrm{~d} / \mathrm{d} t)\left(\partial \bar{L} / \partial \dot{q}_{j}\right)-\left(\partial \bar{L} / \partial q_{j}\right)=0\right\} .
$$

Theorem. If \bar{L} is subordinate to L and

$$
\begin{equation*}
\bar{G}_{i}=A_{i}^{j}(q, \dot{q}, t) G_{i}, \tag{1}
\end{equation*}
$$

with $\operatorname{det} A \neq 0$, then the trace (or the trace of all integer powers) of A is a constant of the motion. (The assumption that A^{-1}, the inverse matrix to A, exists, implies that L is subordinate to \bar{L}, and this is assumed.)

Henneaux (1981) has derived this result in a more geometrical fashion. Lutzky (1982) also did the same using Cartan form; Gonzalez-Gascon (1982) directly from Euler's equations.

Here, we derive it using the Helmholtz conditions (Helmholtz 1887).

2. Helmholtz conditions

Helmholtz conditions are necessary and sufficient conditions for a given set of equations $G_{i}(q, \dot{q}, \ddot{q}, t), i=1, \ldots, n$, to be derived from Hamilton's variational principle, which are

$$
\begin{align*}
& \partial G_{i} / \partial \ddot{q}_{j}=\partial G_{j} / \partial \ddot{q}_{i} \tag{2a}\\
& \frac{\partial G_{i}}{\partial \dot{q}_{j}}+\frac{\partial G_{j}}{\partial \dot{q}_{i}}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial G_{i}}{\partial \ddot{q}_{i}}+\frac{\partial G_{j}}{\partial \dot{q}_{i}}\right) \tag{2b}\\
& \frac{\partial G_{i}}{\partial q_{j}}-\frac{\partial G_{j}}{\partial q_{i}}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial G_{i}}{\partial \dot{q}_{j}}-\frac{\partial G_{j}}{\partial \dot{q}_{i}}\right) \quad i, j=1,2, \ldots, n . \tag{2c}
\end{align*}
$$

From (2a) and (2b) it immediately follows that G_{i} must be linear in \ddot{q}. Hence, without loss of generality we can restrict ourselves to equations of the form (Engels 1975)

$$
\begin{equation*}
G_{i}(\dot{q}, \dot{q}, \ddot{q}, t) \equiv G_{i k}(q, \dot{q}, t) \ddot{q}_{k}+g_{i}(q, \dot{q}, t)=0 \quad i, k=1,2, \ldots, n \tag{3}
\end{equation*}
$$

(using the summation convention). With this the Helmholtz conditions are transformed into

$$
\begin{align*}
& G_{i j} \equiv G_{j i} \quad \partial G_{i k} / \partial \dot{q}_{i} \equiv \partial G_{i k} / \partial \dot{q}_{i} \tag{4a,b}\\
& \frac{\partial g_{i}}{\partial \dot{q}_{i}}+\frac{\partial g_{j}}{\partial \dot{q}_{i}} \equiv 2\left(\frac{\partial G_{i j}}{\partial q_{k}} \dot{q}_{k}+\frac{\partial G_{i j}}{\partial t}\right) \tag{4c}\\
& \frac{\partial G_{i k}}{\partial q_{j}}-\frac{\partial G_{j k}}{\partial q_{i}} \equiv \frac{1}{2}\left(\frac{\partial^{2} g_{i}}{\partial \dot{q}_{k} \partial \dot{q}_{j}}-\frac{\partial^{2} g_{j}}{\partial \dot{q}_{k} \partial \dot{q}_{i}}\right) \tag{4d}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial g_{i}}{\partial q_{j}}-\frac{\partial g_{j}}{\partial q_{i}} \equiv \frac{1}{2}\left(\frac{\partial^{2} g_{i}}{\partial q_{k} \partial \dot{q}_{j}}-\frac{\partial^{2} g_{i}}{\partial q_{k} \partial \dot{q}_{i}}\right) \dot{q}_{k}+\frac{\partial^{2} g_{i}}{\partial t \partial \dot{q}_{j}}-\frac{\partial^{2} g_{j}}{\partial t \partial \dot{q}_{i}} \quad i, j, k=1,2, \ldots, n \tag{4e}
\end{equation*}
$$

The existence of \bar{L} also will be assured by imposing Helmholtz conditions on

$$
\bar{G}_{i} \equiv A_{i}^{k} G_{k m} \ddot{q}_{m}+A_{i}^{k} g_{k} \equiv 0
$$

which take

$$
\begin{align*}
& A_{i}^{k} G_{k j}=A_{j}^{k} G_{k i} \tag{5a}\\
& \partial\left(A_{i}^{k} G_{k m}\right) / \partial \dot{q}_{i}=\partial\left(A_{j}^{k} G_{k m}\right) / \partial \dot{q}_{i} \tag{5b}\\
& \frac{\partial\left(A_{i}^{k} g_{k}\right)}{\partial \dot{q}_{i}}+\frac{\partial\left(A_{i}^{k} g_{k}\right)}{\partial \dot{q}_{i}}=2\left(\frac{\partial\left(A_{i}^{k} G_{k j}\right)}{\partial q_{m}} \dot{q}_{m}+\frac{\partial\left(A_{j}^{k} G_{k j}\right)}{\partial t}\right) \tag{5c}\\
& \frac{\partial\left(A_{i}^{m} G_{m k}\right)}{\partial q_{i}}-\frac{\partial\left(A_{j}^{m} G_{m k}\right)}{\partial q_{i}}=\frac{1}{2}\left(\frac{\partial^{2}\left(A_{i}^{m} g_{m}\right)}{\dot{q}_{k} \partial \dot{q}_{j}}-\frac{\partial^{2}\left(A_{j}^{m} g_{m}\right)}{\partial \dot{q}_{k} \partial \dot{q}_{i}}\right) \tag{5d}\\
& \frac{\partial\left(A_{i}^{m} g_{m}\right)}{\partial q_{j}}-\frac{\partial\left(A_{j}^{m} g_{m}\right)}{\partial q_{i}} \\
& \quad=\frac{1}{2}\left[\left(\frac{\partial^{2}\left(A_{i}^{m} g_{m}\right)}{\partial q_{n} \partial \dot{q}_{i}}-\frac{\partial^{2}\left(A_{j}^{m} g_{m}\right)}{\partial q_{n} \partial \dot{q}_{i}}\right) \ddot{q}_{n}+\left(\frac{\partial^{2}\left(A_{i}^{m} g_{m}\right)}{\partial t \partial \dot{q}_{i}}-\frac{\partial^{2}\left(A_{j}^{m} g_{m}\right)}{\partial t \partial \dot{q}_{i}}\right)\right] . \tag{5e}
\end{align*}
$$

3. Demonstration of the theorem

Equation ($5 c$) can be put in the form
$\left(\frac{\partial A_{i}^{m}}{\partial \dot{q}_{j}}+\frac{\partial A_{j}^{m}}{\partial \dot{q}_{i}}\right) g_{m}+A_{i}^{m} \frac{\partial g_{m}}{\partial \dot{q}_{i}}+A_{j}^{m} \frac{\partial g_{m}}{\partial \dot{q}_{i}}-2 \frac{\mathrm{~d}}{\mathrm{~d} t}\left(A_{i}^{m} G_{m i}\right)+2\left(\frac{\partial}{\partial \dot{q}_{n}}\left(A_{i}^{m} G_{m j}\right)\right) \ddot{q}_{n}=0$.
On the other hand, using ($4 a$), ($4 b$), ($5 a$) and ($5 b$), the last term of (6) can be written as
$2\left(\frac{\partial}{\partial \dot{q}_{n}}\left(A_{i}^{m} G_{m j}\right)\right) \ddot{q}_{n}=\left(\frac{\partial A_{i}^{m}}{\partial \dot{q}_{j}}+\frac{\partial A_{i}^{m}}{\partial \dot{q}_{i}}\right) G_{m n} \ddot{q}_{n}+A_{i}^{m} \frac{\partial G_{m n}}{\partial \dot{q}_{j}} \ddot{q}_{n}+A_{j}^{m} \frac{\partial G_{m n}}{\partial \dot{q}_{i}} \ddot{q}_{n}$.
Using (3) in (7), we get
$2\left(\frac{\partial}{\partial \dot{q}_{n}}\left(A_{i}^{m} G_{m j}\right)\right) \ddot{q}_{n}$

$$
=-\left(\frac{\partial A_{i}^{m}}{\partial \dot{q}_{j}}+\frac{A_{j}^{m}}{\dot{q}_{i}}\right) g_{m}-A_{i}^{m} \frac{\partial g_{m}}{\partial \dot{q}_{j}}-A_{j}^{m} \frac{\partial g_{m}}{\partial \dot{q}_{i}}-A_{i}^{m} G_{m n} \frac{\partial \ddot{q}_{n}}{\partial \dot{q}_{j}}-A_{i}^{m} G_{m n} \frac{\partial \ddot{q}_{n}}{\partial \dot{q}_{i}} .
$$

Using this in (6) results in
$2(\mathrm{~d} / \mathrm{d} t)\left(A_{i}^{m}\right) G_{m j}+2 A_{i}^{m}(\mathrm{~d} / \mathrm{d} t)\left(G_{m j}\right)+A_{i}^{m} G_{m n}\left(\partial \ddot{q}_{n} / \partial \dot{q}_{j}\right)+A_{j}^{m} G_{m n}\left(\partial \ddot{q}_{n} / \partial \dot{q}_{i}\right)=0$.
Now, from (4c), using (3), we get

$$
2(\mathrm{~d} / \mathrm{d} t)\left(G_{i j}\right)=-G_{i n}\left(\partial \dot{q}_{n} / \partial \dot{q}_{j}\right)-G_{j n}\left(\partial \ddot{q}_{n} / \partial \dot{q}_{i}\right)
$$

which on substitution into (8) and using (4a) and (5a) yields the following result

$$
\begin{equation*}
2(\mathrm{~d} / \mathrm{d} t)\left(A_{i}^{m}\right) G_{m j}-A_{i}^{m}\left(\partial \ddot{q}_{n} / \partial \dot{q}_{m}\right) G_{n j}+\left(\partial \ddot{q}_{n} / \partial \dot{q}_{i}\right) A_{n}^{m} G_{m i}=0 \tag{9}
\end{equation*}
$$

Multiplying (9) by $G_{j k}^{-1}$, elements of the inverse matrix to G, effecting the sum on j and utilising the relation

$$
G_{i j} G_{i k}^{-1}=\delta_{i k},
$$

we get

$$
\begin{equation*}
2(\mathrm{~d} / \mathrm{d} t)\left(\boldsymbol{A}_{i}^{k}\right)-\boldsymbol{A}_{i}^{m}\left(\partial \ddot{q}_{k} / \partial \dot{q}_{m}\right)+\left(\partial \ddot{q}_{n} / \partial \dot{q}_{i}\right) \boldsymbol{A}_{n}^{k}=0 . \tag{10}
\end{equation*}
$$

It is easy to see from (10) that

$$
2(\mathrm{~d} / \mathrm{d} t)\left(A_{k}^{k}\right)=0
$$

i.e., the trace of A is a constant of motion. To prove the same result for the trace of all integer powers of A, from the above result, is trivial.

References

Engels E 1975 Nuovo Cimento B 26481
Gonzalez-Gascon F 1982 Phys. Lett. 87A 385
Helmholtz H 1887 J. reine Angew. Math. 100137
Henneaux M 1981 Hadronic J. 42137
Hojman S and Harleston H 1981 J. Math. Phys. 221414
Lutzky M 1982 J. Phys. A: Math. Gen. 15 L87-91

